
A Comparative Analysis of Different Boolean
Function Synthesis Methods

Gabriel Ammes, Walter Lau and Renato P. Ribas
Institute of Informatics

UFRGS
Porto Alegre, Brazil

(gabriel.ammes, wlneto, rpribas)@inf.ufrgs.br

Abstract—This paper presents a useful evaluation of Boolean
function synthesis methods considering metrics like number of
literals, number of operations, circuit logic depth and execution
time. Several logic function synthesis approaches have been
proposed, but the comparison between them is not clearly defined.
Such analysis becomes quite useful for the decision of which one
is more suitable for a given application.

Index Terms—Boolean function, logic synthesis, CAD tool, logic
optimization, digital circuit.

I. INTRODUCTION

Logic synthesis is a well-established research field, with a
direct impact on the quality of digital circuit design [1]. Logic
synthesis methods exploit properties of the Boolean function
to get a minimized expression concerning a given metric and
profile. In particular, the logic function synthesis (i.e., single-
output digital circuit) is the basis for more complex, multiple-
output, combinational circuit design.

In this way, there are several methods with different synthe-
sis strategies, leading to different solutions. A Boolean func-
tion can be synthesized into two-level sum-of-products (SOP)
or product-of-sums (POS) structure, as well as into multi-
level factored expression. Moreover, these representations of
function behavior can be restricted to AND and OR operations
as well as can take into account other ones like exclusive-OR
(XOR) operation. Each function synthesis approach presents
interesting features but also important drawbacks. The choice
of which one should be performed is strongly related to
the technology and circuit topology targeted. Furthermore, in
general, logic synthesis methods present high computing cost.

In this paper, we present a useful evaluation of some widely
applied logic function synthesis methods, taken into account
metrics such as: (i) number of literals, (ii) circuit logic depth,
and (iii) execution time. All methods evaluated here have been
developed in the same computer programming platform in
order to obtain a fair comparison regarding computation cost.

The rest of this paper is organized as follow. Section
II presents the approaches considered in this study, being
divided into methods based on SOP and POS structures,
the Quine-McCluskey algorithm together to the extension
including XOR logic operation, and the presentation of classes

of XOR expressions. Section III presents the experimental
results and the comparative analysis of the presented methods.
The conclusions are outlined in Section IV.

II. BOOLEAN FUNCTION SYNTHESIS

Many methods of Boolean Synthesis uses an n-variable
truth table as input, as shown in Fig. 1a. Minterms and
maxterms can represent a truth table. A minterm is a product
of all function variables, where each variable appears once in
positive or negative polarity. A maxterm corresponds to a sum
of all functions variables, where each variable also appears
once and can be in either polarities. The maxterm can be
obtained by negating the a minterm and vice versa.

Even though we present a range of different methods, there
still others not explored in this work. The approaches discussed
in the following represent some of the most applied ones in the
logic synthesis of digital circuits and have been implemented
in the scope of this work.

A. POS/SOP two-level expression

The most straightforward representation of a truth table
in a Boolean expression is through its canonical normal
form. It can be done into two different ways: at first, the
disjunctive canonical normal form, that consists in a sum of
literal products, where each product of literals is called a
cube; secondly, the conjunctive canonical normal form, which
consists in a product of sums of literals. Each sum of literals
is known as a clause. Due to the structural characteristics of

(a) Truth Table (b) MUX 8X1 (c) MUX 4X1

Fig. 1: Representation of the function F = A⊕ (C ·B)



these forms, the first one is called sum-of-products (SOP) and
the second one is called products-of-sums (POS).

Whereas the SOP is composed by the minterms of a truth
table (where the function is 1) connected through the OR
operator, the POS consists in the truth table maxterms (where
the function is 0) connected by the AND operator. For the
truth table presented in Fig. 1a, the SOP and POS expressions
are the following:

F = A ·B · C +A ·B · C +A ·B · C +A ·B · C (1)

F = A+B +C ·A+B +C ·A+B +C ·A+B +C (2)

B. MUX-based expression

Multiplexer (MUX) is a combinational block that selects
one of the input signals to a single-output terminal [2]. In
other words, the MUX output corresponds to one of the inputs
according to the configuration of the selection signals. Notice
that for a MUX with 2n inputs, there must be n selection sig-
nals. A MUX behavior can be logically represented by an SOP
where each cube corresponds to the selection condition and
the respective input information. Also, a MUX can describe
a given truth table. To do so, the MUX inputs are the truth
table outputs, while the MUX selector signals are the function
variables. Therefore, for a MUX with four inputs, it is possible
to represent all 2-variable functions. The implementation of
the truth table presented in Fig. 1a in a MUX 8x1 is shown
in Fig. 1b and its logic function corresponds to equation 1.

The previous MUX-based representation is quite straightfor-
ward but does not implement any minimization. It is possible
to implement an n-variable function by using a MUX with
2n−1 input signals and n − 1 selectors. In order to achieve
such an optimization, n − 1 variables are used as selector
signals, and the input signal can be then assigned to input
variables in any polarity, as well as the constant values 0 and
1. This optimization is shown in Fig. 1c and its logic function
expression is the following:

F = A ·B · C +A ·B +A ·B · C (3)

C. Quine-McCluskey method

The Quine-McCluskey algorithm is one of the most known
logic synthesis methods [3]. This algorithm is used to find an
SOP with the minimum number of cubes for a given n-variable
truth table. It can also be used to find a POS representation
with the minimum number of clauses.

The algorithm is divided into two parts: finding all prime
implicants of a function and then using these prime implicants
to cover the minterms of the truth table. A prime implicant is
a cube that can cover or represent one or more minterms and
is not covered by any other cube. Moreover, a prime implicant

is called an essential prime implicant when a minterm is only
covered by such a cube.

The algorithm starts by enumerating the cubes. Then, two
cubes that have at most one literal with different polarity can
be combined. This combination leads to a new cube without
such a different literal, which covers the original cubes. When
two cubes are combined, the original ones are removed from
the possible solutions. This process of combination is repeated
until there are no more left cubes to combine. In the end, the
method returns a set of cubes, which are the prime implicants
of the function.

In next, the coverage step takes place. The coverage consists
of fixing the essential prime implicants and using the others
prime implicants to covering the remaining minterms. The
output of this algorithm is the cubes that result in coverage
with the less number of prime implicants. The result is not
unique because it is possible to exist more than one minimum
coverage. For the truth table used until now, a possible
expression generated by this algorithm is the following:

F = A ·B +A ·B · C +A · C (4)

As already stated, it is also possible to synthesize an expres-
sion through a POS form. To do so, instead of representing
minterms as cubes, the evaluation of variables where the output
is 0 is considered. The algorithm flow keeps the same, and the
only modification is that the SOP output has to be negated. In
the end, the well-known DeMorgan laws are applied over the
negated SOP, resulting into a POS expression. For the same
truth table, a possible SOP is as follows:

F = (A+B) · (A+B + C) · (A+ C) (5)

A feature that can be implemented in the Quine-McCluskey
algorithm is the minimum decision chain (MDC) [4]. The
MDC function property corresponds to the minimum number
of transistors in the stack needed to implement a given
function, which represents a strong correlation with the delay.
This number of transistors in the stack can be considered as
the number of literals in a cube.

It takes into account the number of literals in a cube as
the MDC of this cube and defines which one can be used
in this coverage. To define the MDC of the function, the
cubes that are not essential prime implicants and have the
largest products are removed from the possible solution until
finding an essential prime implicant. The product size of this
essential prime implicant corresponds to the MDC of the target
function. This modification is interesting because there are
cases where the original Quine-McCluskey algorithm finds
a minimum coverage but exist another solution (coverage),
possibly that is not the minimum, that respect the function
MDC. A comparison between the solution of the original
algorithm and the solution of the modified algorithm can be
done through the following expressions:



F= (A ·B ·D) + (A ·B · C) + (A ·D · E)

+(A · C ·D) + (B · C ·D · E) (6)

F= (A ·B ·D) + (A ·B · C) + (A ·D · E)

+(A · C ·D) + (A ·D · E) + (A ·B ·D) (7)

An expansion of the Quine-McCluskey algorithm is presented
in [5]. This expansion consider that a cube can use exclusive-
OR (XOR) operation, besides the usually used AND and OR
operations. This expansion is interesting because the use of
XOR operation is very common in digital circuits design, and
its use in Boolean synthesis methods can improve the solutions
[6].

The difference between the original implementation and
such an XOR-based expansion is in the cubes combination.
Besides the combinations that occur when just one literal has
different polarity in two cubes, cubes are also combined when
two literals have different polarities. In the case that these
literals have different polarities in each cube, the new cube
will contain an XOR operation of these two literals. Moreover,
a cube has a pair of literals with positive polarity, and the
other has the same literals with negative polarity, the new cube
will contain an XNOR of these two literals. A result of this
algorithm for the truth table already presented is the following:

F = C · (B ⊕A) + (A · C) (8)

D. XOR Expression
As mentioned before, the use of XOR operation can improve

the results of Boolean synthesis. Sasao, in [7], presents many
classes of expressions that use XOR logic gates, and five of
them are being shown here. Each class has specific features
and can be used to synthesize an expression. Therefore,
expansions are applied over an original expression to build
a new expression that can be a reduced expression. This
process can generate a better representation than the original
expression.

The expressions that can be applied are the positive Davio
expansion, presented in Equation 9, the negative Davio expan-
sion, presented in Equation 10, and the Shannon expansion,
presented in Equation 11,

F = 1 · f0 ⊕ x1 · f2 (9)

F = x1 · f2 ⊕ 1 · f1 (10)

F = x1 · f0 ⊕ x1 · f1 (11)

Where F = f(x1, x2, x3, ..., xn), f0 = f(0, x2, x3, ..., xn),
f1 = f(1, x2, x3, ..., xn)and f2 = f0 ⊕ f1.

The expression classes presented in this work are defined
in the next:

1) Positive Polarity Reed-Muller Expression: It is defined
when the positive Davio expansion can be applied to each
variable. The result expression is unique for a given function
and consists of positive polarity literal only. The representation
of the Equation 1 is the following:

F = A⊕(B ·(A⊕A))⊕(C ·(A⊕(B ·(A⊕A))⊕A⊕B)) (12)

2) Fixed Polarity Reed-Muller Expression: Either the pos-
itive Davio expansion or the negative Davio expansion can
be applied to each variable. Thus, it generates 2n different
expressions for a given function, and its expressions consist
of literals with either positive or negative polarity. A represen-
tation of the Equation 1 is as follows:

F = A⊕ (C · (A⊕ (A⊕B))) (13)

3) Kronecker Expression: Either the positive Davio expan-
sion, the negative Davio expansion or the Shannon expansion
can be applied to each variable. There are at most 3n different
expressions for a function, and its literals can appear with any
polarity. A representation of the Equation 1 is the following:

F = (C ·A)⊕ (C · (A⊕B)) (14)

4) Pseudo Reed-Muller Expression: When an expansion
is applied in expression, an XOR operation with two sub-
expressions is generated. In this class, either positive Davio
expansion or negative Davio expansion can be applied to each
variable and for each sub-expression. Therefore, it is generated
a more general expression than the fixed polarity Reed-Muller
expression. There are at most 22

n−1 different expressions for
a function and its expressions consist of literal with either
positive or negative polarity. A representation of the Equation
1 is as follows:

F = A⊕ (C ·B) (15)

5) Pseudo Kronecker Expression: Either positive Davio
expansion, negative Davio expansion or Shannon expansion
can be applied for each variable and each sub-expression.
Therefore, it generates a more general expression than the
Kronecker expression. There are at most 32

n−1 different
expressions for a function, and its literals can appear with any
polarity. A representation of the Equation 1 is the following:

F = A⊕ (C ·B) (16)

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The methods presented in this work were implemented in
Java programming language and validated using the logic syn-
thesis framework KARMA [8]. These methods were evaluated
considering the number of literals, number of AND and OR
operations, number of XOR operations, circuit logic depth
and execution time. Table I shows the experimental results



for all 3-variable functions, Table II presents the results for
all 4-variable functions and Table III provides the results for
a thousand random generated 5-variable functions. Pseudo-
Kronecker can be applied in functions up to 3 variables and
pseudo-Reed-Muller in functions up to 4 variables.

TABLE I: All functions of 3 variables.

Method Literals AND/OR XOR Depth Time(s)
SOP 12.0 11.0 0.0 2.0 0.01
POS 12.0 11.0 0.0 2.0 0.01
MUX 6.7 5.7 0.0 1.9 0.02

QMSOP 5.0 4.0 0.0 1.8 0.03
QMPOS 5.0 4.0 0.0 1.8 0.03
QMXOR 3.8 2.2 0.6 2.0 0.08
PPRME 6.0 2.4 2.6 3.3 0.09
FPRME 4.9 2.5 1.8 3.0 0.23

KRO 4.5 2.5 1.0 2.0 0.32
PSDRME 4.0 1.8 1.2 1.7 0.32
PSDKRO 4.0 1.8 1.1 1.7 2.80

TABLE II: All functions of 4 variables.

Method Literals AND/OR XOR Depth Time(s)
SOP 32 31 0 2 4.1
POS 32 31 0 2 4.2
MUX 18.7 17.8 0 2 16.9

QMSOP 12.7 11.5 0 2 20.3
QMPOS 12.7 11.5 0 2 20.0
QMXOR 8.2 5.45 1.82 2.8 83.6
PPRME 18.8 8 9.7 5.8 12.7
FPRME 15 6.8 7.2 5.75 73.1

KRO 11.5 6.9 3.6 5 277.2
PSDRME 10.6 6.2 3.4 2.3 25200.0

TABLE III: 5 variables random functions.

Method Literals AND/OR XOR Depth Time(s)
SOP 59.6 58.6 0 2 0.4
POS 101.3 100.3 0 2 0.5
MUX 38.3 37.3 0 2 2.0

QMSOP 26.5 25.5 0 2 9224.0
QMPOS 26.7 25.7 0 2 23233.8
QMXOR 15.5 11.4 3.1 2.8 10931.0
PPRME 50.3 23.0 26.2 7.7 1.2
FPRME 38.4 18.9 18.5 7.5 5.48

KRO 22.1 14.1 7.0 6.8 29.0

Taking a look at the results, the first two tables one can
see that the results between SOP and POS and of Quine-
McCluskey using SOP and POS has symmetric values, what
does not appear in the third one. It happens because was not
possible to use all 5-variables functions, using random gener-
ates functions. In this way, one can see that POS has much
more literals than SOP and Quine-McCluskey using SOP and
POS do not present this difference, what explain the time
difference between this two Quine-McCluskey approaches.
Also, one can see that the MUX-based method presents better
results than SOP and POS based approaches, as expected, and
has good results compared to the Quine-McCluskey algorithm

if one takes into account the time difference between these
approaches. We have also noticed that the effort of applying
an expansion in order to minimize a given expression does not
look to worth. Even using a multi-level synthesis, the results
are worse than the XOR-extended Quine-McCluskey approach
that can be considered a 3-level synthesis.

The time increase presented in the comparison between
Table II and Table III in the Quine-McCluskey-based methods
are bigger than expected. This is due to the coverage step
implementation, which is a NP-hard problem [9]. Further
optimization in the covering may be exploited in order to speed
up the runtime.

IV. CONCLUSIONS

Comparing the results presented in Section III, we can
conclude that, for a general purpose and disregarding the
design cost differences between XOR and AND/OR gates, the
Quine-McCluskey expansion considering XOR seems to be
the most indicated Boolean synthesis method. As future work,
we intend to optimize the Quine-McCluskey algorithm or
implement another 2-level method and to optimize the pseudo-
Kronecker expression by implementing the method presented
in [7], as well as to implement another multi-level synthesis
method, such as the factoring one [10].

V. ACKNOWLEDGEMENTS

This work has been partially supported by CNPq and
CAPES Brazilian government agencies.

REFERENCES

[1] L. T. Wang, Y. W. Chang, K. T. Cheng, Electronic Design Automation:
Synthesis, Verification and Test. Morgan Kaufmann, 2009.

[2] Brown, S., Vranesic, Z. ”Synthesis of Logic Functions Using Multiplex-
ers”, Fundamentals of Digital Logic With Vhdl Design, pp. 323-326,
2000.

[3] E. J. McCluskey, ”Minimization of Boolean functions”, Bell Syst. Tech.
J., vol. 35, no. 5, pp. 1417-1444, 1956.

[4] M. G. A. Martins, V. Callegaro , R. P. Ribas, and A. I. Reis, “Com-
puting Minimum Decision Chains of Boolean Functions ” 26th South
Symposium on Microelectronics, pp. 35-38, 2011.

[5] B. C. H. Turton, ”Extending Quine-McCluskey for Exclusive-Or Logic
Synthesis”; IEEE Transactions on Education, Vol. 39, No. 1, Feb. 1996,
pp. 81-85.

[6] Sasao, T. “Logic Synthesis with EXOR gates”, Logic Synthesis and
Optimization, pp 259-285, 1993.

[7] Sasao, T. “AND-EXOR Expressions and their Optimization”, Logic
Synthesis and Optimization, pp 287-312, 1993.

[8] C. Klock, F. Schneider, M. Gomes, D. Moura, R. Ribas, and A. Reis,
“KARMA: A didactic tool for two-level logic synthesis.” Microelec-
tronic Systems Education (MSE), IEEE International Conference on,
jun. 2007, pp. 59–60

[9] Kumar V. “Finite Boolean Algebra”, Discrete Mathematics, pp 150-154,
2002.

[10] Mintz A., Golumbic M. C. ”Factoring Boolean functions using graph
partitioning”, Discrete Applied Mathematics, Vol. 149, pp. 131-153,
2005.


